

JX-003-1015044

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

October - 2019

Statistics: S - 503

(Statistical Inference) (New Course)

Faculty Code: 003

Subject Code: 1015044

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

- (1) All questions are compulsory.
- (2) All questions carry equal marks.
- (3) Students can use their own scientifice calculators.

1	(a)	Give the answers of following questions:	4
		(1) An estimator T_n which is most concentrated about parameter θ is the estimator.	
		(2) If an estimator T_n converges in probability to the parametric function $\tau(\theta)$, T_n is said to be a estimator.	

- (3) If the expected value of an estimator T_n is equal to the value of the parameter θ , T_n is said to be _____ estimator of θ .
- (4) The difference between the expected value of an estimator and the value of the corresponding parameters is known as _____.

(b) Write any one:

- 2
- (1) Obtain sufficient estimator of θ for $f(x, \theta) = \theta e^{-\theta x}$; where $0 \le x \le \infty$.
- (2) Obtain an unbiased estimator of θ for Poisson distribution.
- (c) Write any one:

3

- (1) Obtain consistent estimator of μ for Normal distribution.
- (2) If $t'' = \frac{1}{2}(t+t')$ where t and t' is the most efficient estimator with variance v then prove that $Var(t'') = \frac{1}{2}v(1+\sqrt{e})$.
- (d) Write any one:

5

- (1) If $x \sim N(\mu, \sigma^2)$ and μ is known then obtain unbiased estimator of σ .
- (2) If T_1 and T_2 be two unbiased estimator of θ with variance σ_1^2 , σ_2^2 and correlation ρ , what is the best unbiased linear combination of T_1 and T_2 and what is the variance of such combination?
- 2 (a) Give the answers of following questions:
 - (1) For discrete variable Crammer-Rao inequality _____.
 - (2) An estimator of $v_{\theta}(T_n)$ which attains lower bound for all θ is known as _____.
 - (3) An unbiased and complete statistic is a _____ estimator provided MVUE exists.
 - (4) If T_1 and T_2 are two MVU estimator for $T(\theta)$, then _____.

(b) Write any one:

- 2
- (1) Define Minimum Variance Bound Estimator.
- (2) Obtain MVUE of parameter p for Binomial distribution.
- (c) Write any one:

3

- (1) Obtain MVUE and MVBE of θ for Poisson distribution.
- (2) Independent observation $x_1, x_2, x_3, ..., x_n$ taken from the following density function

$$f(x, \theta) = \frac{1}{\theta} e^{-\left(\frac{x}{\theta}\right)}$$
; where $0 \le x \le \infty$.

Find the Cramer Rao Lower Bound for variance of unbiased estimator of θ .

(d) Write any one:

5

- (1) State and prove Cramer-Rao Inequality.
- (2) Obtain MVUE and MVBE of σ^2 for Normal distribution.
- 3 (a) Give the answers of following questions:

4

- (1) A value of a parameter θ which maximize the likelihood function is known as _____ estimate θ .
- (2) Maximum likelihood estimate of the parameter θ of the distribution $f(x, \theta) = \frac{1}{2} e^{-|x-\theta|}$ is _____.
- (3) For a Gama (x, α, λ) distribution with λ known, the maximum likelihood estimate of α is _____.
- (4) Minimum Chi-square estimators are not necessarily

(b) Write any one:

- 2
- (1) Obtain likelihood function of Negative Binomial distribution.
- (2) Estimate parameter θ by the method of moment for the following distribution

$$f(x, \theta) = \frac{1}{\theta} x$$
; where $0 \le x \le 1$.

(c) Write any one:

3

- (1) Obtain MLE of parameter p for the distribution $f(x, p) = pq^x$; where $x = 0, 1, 2, ..., \infty$.
- (2) Estimate parameters α and β by the method of moment for the following distribution

$$f(x, \alpha, \beta) = \frac{\alpha^{\beta}}{|\overline{\beta}|} e^{-\alpha x} x^{\beta - 1}$$
; where $x \ge 0$, $\alpha > 0$.

(d) Write any one:

5

(1) Obtain MLE of α and λ for the following distribution

$$f(x, \alpha, \lambda) = \frac{1}{|\overline{\lambda}|} \left(\frac{\lambda}{\alpha}\right)^{\lambda} e^{-\left(\frac{\lambda}{\alpha}\right)x} x^{\lambda - 1}; \text{ where } 0 \le x \le \infty, \ \lambda > 0$$

where
$$\varphi(\lambda) = \frac{\partial}{\partial \lambda} \log |\overline{\lambda}| = \log \lambda - \frac{1}{2\lambda}$$
 thus $\varphi'(\lambda) = \frac{1}{\lambda} + \frac{1}{2\lambda^2}$.

(2) For the double Poisson distribution

$$P(X=x) = \frac{1}{2} \frac{e^{-m_1} m_1^x}{x!} + \frac{1}{2} \frac{e^{-m_2} m_2^x}{x!} ; 0, 1, 2, \dots$$

Show that the estimator for m_1 and m_2 by the method of moment are $\mu'_1 \pm \sqrt{\mu'_2 - \mu'_1 - (\mu'_1)^2}$.

4 (a) Give the answers of following questions:

4

- (1) A null hypothesis is rejected if the value of a test statistics lies in the _____.
- (2) Probability of ______ error is called level of significance.
- (3) If β is the probability of type II error, the power of the test is _____.
- (4) Accepting H_0 when H_0 is false is _____ error.
- (b) Write any one:

2

- (1) Define MP test.
- (2) Given a random sample $x_1, x_2, x_3, ..., x_n$ from the distribution with pdf

 $f(x, \theta) = \frac{1}{\theta}$; where $0 \le x \le \theta$. Obtain power of the test for testing $H_0: \theta = 1.5$ against $H_1: \theta = 2.5$; where $c = \{x : x \ge 0.8\}$.

(c) Write any one:

3

(1) Give a random sample $x_1, x_2, x_3,, x_n$ from distribution with p.d.f.

$$f(x; \theta) = \theta e^{-\theta x}; \ 0 \le x \le \infty, \ \theta > 0.$$

Use the Neyman Pearson Lemma to obtain the best critical region for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$.

(2) Let p be the probability that coin will fall head in a single toss in order to test $H_0: p = \frac{1}{2}$ against

 H_1 : $p = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find the probability of type-I error, type-II error and power of test.

(d) Write any one:

5

- (1) State and prove the Neyman-Pearson Lemma.
- (2) Use Neyman-Pearson Lemma to obtain the best critical region for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ in the case of Normal distribution $N(\theta, \sigma^2)$ where σ^2 is known.
- (a) Give the answers of following questions:
 (1) Likelihood Ratio test for testing a hypothesis, simple or composite, against a _____ or ___ alternative hypothesis.
 (2) The decision criteria in SPRT depends on the function of _____ and ____ errors.
 - (3) To decide about H_0 , SPRT involves _____ regions.
 - (4) Likelihood Ratio test is relation the maximum estimates.
 - (b) Write any one:

2

- (1) Define ASN function of SPRT.
- (2) Define UMP test.

(c) Write any one:

- 3
- (1) Construct SPRT of Binomial distribution for testing $H_0: \theta = p_0$ against $H_1: \theta = p_1 (> p_0)$.
- (2) Write the properties of Likelihood Ratio test.
- (d) Write any one:

5

(1) Let sample distribution $x_1, x_2, x_3, \dots, x_n$ taken from

$$f(x, \theta) = \frac{1}{\sqrt{2\pi}} e^{-\left\{\frac{(x-\theta)^2}{2}\right\}}; \text{ where } -\infty \le x \le \infty, -\infty \le \theta \le \infty.$$

To likelihood Ratio $H_0: \theta \le \theta_0$ against $H_1: \theta > \theta_0$.

(2) Give the SPRT for test $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1 \ (> \lambda_0)$, in sampling from a Poission distribution. Also obtain its OC and ASN function.